11 research outputs found

    Multi-variable Constrained Control Approach for a Three-Dimensional Eel-like Robot

    Get PDF
    International audienceIn this paper, a multi-variable feedback design for the 3D movement of an eel-like robot is presented. Such a robot is under construction in the context of a national French robotic project. The proposed feedback enables the tracking of a desired 3D position of the eel's head as well as the stabilization of the rolling angle. The control design is based on a recently developed reduced model that have been validated using a 3D complete continuous model. Several scenarios are proposed to assess the efficiency of the proposed feedback law

    Commande d'un robot Anguille

    No full text
    This work is done in the context of two successive French national research projects "Robot Anguille" (ROBEA 2003-2006) and "RAAMO" (ANR 2007-2010). The aim of these projects is to design, construct and control the 3D motion of a tele-operated or an autonomous eel-like robot. This thesis is dedicated to the control law design. First, decoupled control schemes for the robot's 3D movements are proposed with and without using the pectoral fins. The controller is tested on an existing complete 3D model that is developed in the project. A virtual desktop is developed as a simulator for implementing the model and testing the control laws. In this virtual environnement, 3D movements are controlled by an operator using a joystick. The complete model that is not suitable for use in advanced control law design is used to identify a proposed reduced mean model for the eel robot. A multi-variable constrained control approach for the robot's 3D movements is proposed based on the reduced model. The reduced model and the associated control are used in a predictive control scheme in order to realize the robot's navigation in dynamic environment. Some experiences are realized in open loop using the actual existing part of the prototype (6 vertebras among the expected 12).Ce travail est réalisé dans le cadre de deux projets nationaux français "Robot Anguille" (ROBEA 2003-2006) et "RAAMO" (ANR 2007-2010). L'objectif de ces projets est la conception, la réalisation et la commande d'un robot anguille télé-opéré puis autonome capable de nager en 3 dimensions. La thèse porte sur la partie conception des lois de commande assurant la nage 3D du robot. Des schémas de commande sont proposés avec et sans utilisation de nageoires pectorales. Ces lois, contrôlant la nage du robot, ont été validées sur un modèle 3D complet développé dans le cadre du projet. Un environnement virtuel pour la simulation de la commande est développé, dans lequel un opérateur contrôle les mouvements 3D du modèle simulé à l'aide d'un "joystick". Un modèle réduit moyen, pouvant être utilisé dans un schéma de commande avancée, est identifié sur la base du modèle complet. Une approche de commande multi-variable sous contraintes est proposée sur la base du modèle réduit pour assurer aussi la nage 3D du robot. Le modèle réduit et la commande associée sont utilisés dans un schéma de commande de type prédictif pour assurer la navigation autonome du robot dans un environnement avec des obstacles dynamiques. Quelques expériences sont réalisées en boucle ouverte sur la moitié existante du prototype (6 vertèbres sur les 12 prévues)

    Commande d'un robot anguille

    No full text
    Ce travail est réalisé dans le cadre de deux projets nationaux français "Robot Anguille" (ROBEA 2003-2006) et "RAAMO" (ANR 2007-2010). L'objectif de ces projets est la conception, la réalisation et la commande d'un robot anguille télé-opéré puis autonome capable de nager en 3 dimensions. La thèse porte sur la partie conception des lois de commande assurant la nage 3D du robot. Des schémas de commande sont proposés avec et sans utilisation de nageoires pectorales. Ces lois, contrôlant la nage du robot, ont été validées sur un modèle 3D complet développé dans le cadre du projet. Un environnement virtuel pour la simulation de la commande est développé, dans lequel un opérateur contrôle les mouvements 3D du modèle simulé à l'aide d'un "joystick". Un modèle réduit moyen, pouvant être utilisé dans un schéma de commande avancée, est identifié sur la base du modèle complet. Une approche de commande multi-variable sous contraintes est proposée sur la base du modèle réduit pour assurer aussi la nage 3D du robot. Le modèle réduit et la commande associée sont utilisés dans un schéma de commande de type prédictif pour assurer la navigation autonome du robot dans un environnement avec des obstacles dynamiques. Quelques expériences sont réalisées en boucle ouverte sur la moitié existante du prototype (6 vertèbres sur les 12 prévues).This work is done in the context of two successive French national research projects "Robot Anguille" (ROBEA 2003-2006) and "RAAMO" (ANR 2007-2010). The aim of these projects is to design, construct and control the 3D motion of a tele-operated or an autonomous eel-like robot. This thesis is dedicated to the control law design. First, decoupled control schemes for the robot's 3D movements are proposed with and without using the pectoral fins. The controller is tested on an existing complete 3D model that is developed in the project. A virtual desktop is developed as a simulator for implementing the model and testing the control laws. In this virtual environnement, 3D movements are controlled by an operator using a joystick. The complete model that is not suitable for use in advanced control law design is used to identify a proposed reduced mean model for the eel robot. A multi-variable constrained control approach for the robot's 3D movements is proposed based on the reduced model. The reduced model and the associated control are used in a predictive control scheme in order to realize the robot's navigation in dynamic environment. Some experiences are realized in open loop using the actual existing part of the prototype (6 vertebras among the expected 12).GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Motion Control of a Three-Dimensional Eel-like Robot Without Pectoral Fins

    Get PDF
    International audienceIn this paper, recent advances in the design of feedback laws for the 3D movement of an Eel-like robot are presented. Such a robot is under construction in the context of a national French robotic project. The proposed feedback enables the tracking of a desired 3D position of the Eel head as well as the stabilization of the rolling angle without using pectoral fins. We build on a previous work in which we proposed a complete control scheme for robot's 3D movement using its pectoral fins. The controller is tested on a recently developed complete 3D model in order to assess its efficiency in tackling 3D manoeuvres

    A New Time-Varying Feedback RISE Control of PKMs: Theory and Application

    No full text
    In this paper, we propose a novel time-varying feedback control strategy based on the Robust Integral of the Sign of the Error (RISE). The main motivation is to enhance the tracking performance of RISE controller at high dynamic operating conditions. RISE control law ensures a semi-global asymptotic tracking without introducing severe restrictions on the uncertain and nonlinearly parametrized systems. More nonlinearities are added to the original RISE control law by replacing the static feedback gains with nonlinear ones which depend on the system state variables. The proposed contribution is implemented in real-time experiments on a non-redundant three-degrees-of-freedom parallel manipulator named Delta. Comparing to the standard RISE controller, experimental results show better tracking performances of the proposed time-varying feedback RISE controller

    Feedback design for 3D movement of an Eel-like robot

    No full text
    International audienceThis paper relates recent advances in the design of feedback laws for the 3D movement of an Eel-like robot. Such a robot is under construction in the context of a national French robotic project. The proposed feedback enables the tracking of a desired 3D position of the Eel head as well as the stabilization of the rolling angle. A velocity controller is also proposed. The controller is tested on a recently developed complete 3D model in order to assess its efficiency in tackling 3D manoeuvres

    Time-Optimal Pick-and-Throw S-Curve Trajectories for Fast Parallel Robots

    No full text
    International audienceIn suitable robotic applications, throwing an object instead of placing it has the potential of improving the cycle time. In this context, a challenge is to generate time-optimal Pick-and-Throw (P&T) trajectories in order to further increase productivity. This paper introduces a methodology to determine a minimum-time throwing motion. This methodology consists essentially in determining an optimal release configuration (i.e. position and velocity) allowing an object to be thrown towards a desired target while minimizing the travel time of the throwing motion of the robot. To validate the potential of the proposed P&T approach, a comparison with the standard Pick-and-Place (P&P) process and an existing P&T method is made using the Delta-like parallel robot T3KR under different operating conditions. The obtained experimental results demonstrate the superiority and efficiency of the proposed P&T approach over the usual P&P and the existing P&T methods in terms of picking speed and cycle time

    Ultra-Local Model-Based Intelligent Robust Control of PKMs: Theory and Simulations

    No full text
    International audienceIn this paper, we propose a novel Intelligent Robust Control (IRC) suitable for controlling highly nonlinear Multiple-Input-Multiple-Output (MIMO) systems. The proposed IRC scheme takes advantage of the Robust Integral of the Sign of the Error (RISE) control law and Model-Free Control (MFC). The MFC scheme is mainly composed of: (i) a nonlinear function estimated from an ultralocal model representing the input-output behavior of the system, (ii) the ν th derivative of the reference trajectory as a feedforward term, and (iii) a feedback control term. MFC is characterized by its simple concept and its ability to compensate for the modeled and unmodeled system dynamics through its nonlinear compensation term. The proposed IRC approach consists of redesigning the feedback term of MFC scheme based on RISE feedback law to further improve its robustness against external disturbances and to guarantee a semi-global asymptotic tracking despite the presence of disturbances and uncertainties. Numerical simulations under different operating conditions have been conducted on T3KR parallel manipulator, in a pick-and-throw task, to validate the relevance of the proposed IRC strategy. The comparison with a model-based feedforward RISE and a feedforward super-twisting sliding mode control, by exploiting different performance indices, confirms the superiority of the proposed IRC approach
    corecore